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Abstract. By using the non-relativistic effective Lagrangian approach to bound states, a complete expression
for the isospin-breaking corrections to the energy levels and the decay widths of kaonic hydrogen is obtained
up-to-and-including O(α, md −mu) in QCD. It is demonstrated that, although the leading-order corrections
at O(α1/2, (md −mu)1/2) emerging due to the unitarity cusp are huge, they can be expressed solely in terms
of the KN S-wave scattering lengths. Consequently, at leading order, it is possible to derive parameter-free
modified Deser-type relations, which can be used to extract the scattering lengths from the hadronic
atom data.

1 Introduction

The ongoing DEAR experiment [1] at the DAΦNE facil-
ity (LNF-INFN) aims at an accurate measurement of the
ground-state strong-energy shift and width of kaonic hydro-
gen and of the strong shift of kaonic deuterium. Preliminary
results of the measurements for the kaonic hydrogen have
been reported in [2]:

∆Es
1 = 202 ± 45 eV , Γ1 = 250 ± 138 eV . (1)

Here, ∆Es
1 stands for the strong-energy-level shift of the

ground state of the kaonic hydrogen (total energy shift
minus certain electromagnetic contributions), and Γ1 de-
notes the width of the ground state. It should be pointed
out that these results are in contradiction with the earlier
measurements [3–6]; see also Fig. 3 below.

The final goal of the DEAR experiment is to extract
precise values of theKN S-wave scattering lengths from the
data by using some counterpart of Deser-type relations [7].
Neglecting isospin-breaking corrections altogether, in the
case of kaonic hydrogen these relations are given by

∆Es
1 − i

2
Γ1 = −2α3µ2

c aK−p , aK−p =
1
2

(a0 + a1) ,(2)

where µc denotes the reduced mass of the K−p system,
and a0, a1 stand for the I = 0, 1 S-wave KN scattering
lengths in QCD in the isospin limit (α = 0, md = mu).
In addition, our definition of the isospin limit implies that
the particle masses in the multiplets are taken to be equal
to the charged particle masses in the real world (proton,

* On leave of absence from HEPI, Tbilisi State University,
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π+, K+, . . .). Further, in the experimental proposal it has
been stated that the precise knowledge of the KN scat-
tering lengths could allow one to deduce more accurate
values for the KN σ terms and the strangeness content of
the nucleon. In practice, however, the implementation of
the above program might pose a rather big challenge to
theory (see, e.g. [8] and references therein). For this rea-
son, in this paper we restrict ourselves to the moderate
goal of relating the KN scattering lengths to the measur-
able characteristics of kaonic hydrogen at the accuracy that
matches the experimental precision. Using these scattering
lengths for determining the parameters of the low-energy
kaon–nucleon interactions is thus out of the scope of the
present paper.

It turns out that the isospin-breaking corrections to the
lowest-order relation given by (2) are huge. In particular,
these are much larger than their counterparts in pionic
hydrogen, or in pionium (typically, a few percent). This
can be immediately seen, e.g., from Table 1 (see below) by
comparing the entries in the same column. The reason for
this qualitative difference will be discussed. In addition,
the existing predictions in the literature, most of which
are done in the framework of potential scattering theory
(see [9–12] for an incomplete list of the earlier work on the
subject), are anything but consistent with each other. In
particular, although large corrections have been predicted
in some of these papers, these effects have not been treated
systematically – e.g., it is not always clear whether all
possible large corrections are taken into account. Needless
to say, all this could make the interpretation of the results
of the accurate measurements of the DEAR experiment a
difficult task.

The aim of the present paper is to obtain the formal
relationbetween the energy shift and thewidth of kaonic hy-
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drogen, and theKN scattering lengths up-to-and-including
isospin-breaking effects atO(α,md−mu)1 inQCD,byusing
the systematic approach to the bound-state problem based
on the non-relativistic effective Lagrangians. In the past,
this method has already been applied to study pionium
and kaonium [13–15], as well as pionic hydrogen [16–18].
It happens to be a very useful and convenient approach
to describe the spectrum and decays of this sort of bound
states. We shall see that the approach is universal: the
treatment of kaonic hydrogen closely follows the pattern
of pionic hydrogen.

2 Formalism

As it was already pointed out, the quantities that we are
aiming to extract from the data on kaonic hydrogen, are
the S-waveKN scattering lengths a0, a1 evaluated in QCD
in the isospin limit, i.e. in the absence of the electromag-
netic interactions and at md = mu. Note that we avoid
using the threshold scattering amplitude calculated with
physical hadron masses but in the absence of electromag-
netic effects, which is sometimes encountered in the liter-
ature (see e.g., [19, 20]). The reason for this is that this
quantity cannot be consistently made ultraviolet-finite to
all orders in chiral perturbation theory (ChPT)2. Further,
the isospin-breaking effects are parameterized in terms of
α and md − mu. It is convenient to introduce a corre-
lated counting of these effects, defining a formal parameter
δ ∼ α ∼ md −mu [16]. Equation (2) is then valid up-to-
and-including O(δ3) in isospin breaking, and to all orders
in the chiral expansion for the quantity a0 + a1 which is
present in this expression. In the present paper we modify
the relation (2), including all terms of order δ7/2 and δ4.

In order to construct a non-relativistic Lagrangian that
can describe the spectrum of kaonic hydrogen at O(δ4), we
note the following.
(i)The only states that are degenerate inmasswith theK−p
state in the isospin limit δ → 0, are the states K−p+ nγ,
K̄0n+n′γ, withn, n′ = 0, 1, . . .We explicitly “resolve” only
these states in our non-relativistic theory, whereas the effect
of other intermediate states, whose mass is not degenerate
with that of theK−p state in the isospin limit, is included in
the couplings of the non-relativistic effective Lagrangian.3

1 We use throughout the Landau symbols O(x) [o(x)] for
quantities that vanish like x [faster than x] when x tends to
zero. Furthermore, it is understood that this holds modulo
logarithmic terms, i.e. we write also O(x) for x ln x.

2 Consider the loop contributions to the scattering amplitude
with both charged and neutral particles running inside the dia-
grams. The divergent parts which are generated by these loops
depend on charged and the neutral particle masses. Since the
mass difference contains the electromagnetic piece proportional
to e2, in order to cancel all divergences one needs, along with
the “strong” counterterm Lagrangian, the “electromagnetic”
counterterms as well. The latter was, however, ruled out from
the beginning.

3 For the treatment of the nγ intermediate state in pionic
hydrogen, which is similar in spirit to the approach used here,
see [18].

In particular, the SU(3) breaking scale ms − mu counts
at O(δ0) in our approach. As a result, all effects which are
non-analytic in the parameter δ – e.g. containing

√
δ or

ln δ, should be produced by the loop expansion in the non-
relativistic theory. To the contrary, the generic couplings
gi of the non-relativistic Lagrangian are regular functions
of δ and can be expanded in Taylor series:

gi = g
(0)
i + αg

(1)
i + (md −mu)g(2)

i +O(δ2) . (3)

(ii) The couplings d̃i that describe the KN scattering in
the tree approximation (see (4)) are complex. The imagi-
nary parts of the d̃i can be related through the unitarity
condition to the transition cross sections of the KN ini-
tial state into the different inelastic channels. In this case,
there exist open strong channels – e.g. πΣ, π0Λ, etc. The
mass gap between these shielded two-particle states and the
KN state is determined by the SU(3) breaking scale. Con-
sequently, the couplings d̃i are complex already at O(δ0).
This is different from the case of the pionic hydrogen, where
the imaginary part of the effective two-pion–two-nucleon
couplings is of order δ.
(iii) The leading strong decay channel in the case of pionic
hydrogen is π0n. The phase space for this decay channel
is proportional to (mp +Mπ+ −mn −Mπ0)1/2 and is thus
suppressed by a factor δ1/2. For this reason, the ratio of the
decay widths into the leading electromagnetic channel nγ,
and into the π0n channel counts as order δ1/2 only. Numer-
ically, the branching ratio into the nγ channel amounts up
to ∼ 40% in the total decay width. In contrast to this, in
the case of kaonic hydrogen this branching ratio counts as
O(δ). The measured branching ratio into the leading Λγ,
Σγ channels is much less than 1% [21] (the theoretical de-
scription of this quantity byusing chiral Lagrangians [12,22]
gives a result consistent with the experiment by order of
magnitude). Consequently, the perturbative treatment of
the effects due to these channels, as it is carried out in this
paper, is justified.4
(iv) Within our approach, it is sufficient to deal with the
sub-threshold Λ (1405) resonance indirectly, through the
(large) KN scattering lengths. The reason for this simpli-
fication is that the mass gap counts atO(δ0) in our counting
of the isospin-breaking effects, i.e. the effect occurs at a
“hard scale” and should be included in the effective cou-
plings.
(v) The K̄0n system is a bit heavier than K−p. This sim-
ple fact has dramatic consequences on the size of isospin-
breaking corrections, which is nothing but the well-known
cusp effect (note that the cusp effect is also the domi-
nant isospin-breaking effect in some other low-energy pro-
cesses, e.g. in neutral pion photo-production off nucle-
ons [23].). Namely, the loop with the K̄0n intermediate
state at threshold in the non-relativistic theory is propor-
tional to (mn +MK̄0 −mp −MK+)1/2 ∼

√
δ and is real. Its

counterpart for the pionic hydrogen case is purely imag-
inary. This means that, in the case of pionic hydrogen,
the corrections to the real quantities – the energy shift

4 We thank E. Oset for interesting discussions on this issue.
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and width – cannot contain a contribution from a single
neutral loop. Only the product of two loops, which is a
real quantity, can contribute – therefore, the corrections
start at order δ with respect to the leading-order term. To
the contrary, the corrections for kaonic hydrogen can con-
tain a single neutral loop. Due to this, the isospin-breaking
corrections to the Deser formula for kaonic hydrogen start
at O(

√
δ) and are much larger than their counterparts for

pionic hydrogen.
Despite the differences between pionic and kaonic hy-

drogen that were discussed above, one may apply exactly
the same formal approach in both cases to the calculation of
the bound state spectra. Below, we closely follow the path
outlined in [16]. The effective non-relativistic Lagrangian
is given by

L = − 1
4
FµνF

µν + ψ†
{

iDt −mp +
D2

2mp
+

D4

8m3
p

+ . . .

−cFp
eσB
2mp

− cDp
e(DE − ED)

8m2
p

− cSp
ieσ(D × E − E × D)

8m2
p

+ . . .

}
ψ

+χ†
{

i∂t −mn +
∇2

2mn
+

∇4

8m3
n

+ . . .

}
χ

+
∑
±

(K±)†
{

iDt −MK+ +
D2

2MK+
+

D4

8M3
K+

+ . . .

∓ cRK
e(DE − ED)

6M2
K+

+ . . .

}
K±

+(K̄0)
†
{

i∂t −MK̄0 +
∇2

2MK̄0
+

∇4

8M3
K̄0

+ . . .

}
K̄0

+d̃1 ψ
†ψ (K−)†K− + d̃2(ψ†χ (K−)†K̄0 + h.c.)

+d̃3χ
†χ (K̄0)†K̄0 + . . . . (4)

Here, Fµν stands for the electromagnetic field strength ten-
sor (we work in the Coulomb gauge). Further,ψ, χ,K± and
K̄0 denote the non-relativistic field operators for the pro-
ton, neutron, charged and neutral kaon fields, and Dtψ =
∂tψ−ieA0ψ, Dψ = ∇ψ+ieAψ,DtK

± = ∂tK
±∓ieA0K

±,
DK± = ∇K± ± ieAK± are the covariant derivatives act-
ing on the proton and charged pion fields, respectively.
The ellipsis stands for the higher-dimensional operators
and the UV counterterms. The values of the couplings ci
can be read off from the matching condition for the kaon
and nucleon electromagnetic form-factors: cFp = 1 + µp,
cDp = 1 + 2µp + 4

3 m
2
p〈r2p〉, cSp = 1 + 2µp, cRK = M2

K+〈r2K〉,
where µp denotes the anomalous magnetic moment of the
proton, and 〈r2p〉, 〈r2K〉 stand for the squared charge radii
of the proton and the charged kaon, respectively.

Formally, the vacuum polarization contributions to the
energy shift and width start at O(α5). It is, however, well
known that the electronic vacuum polarization contribu-
tion is amplified by powers of the factor µc/me ∼ 103,
with me being the electron mass. It is convenient to count
the quantity η

.= αµc/me as O(δ0). Then, the leading-

Fig. 1. Modification of the timelike component of the free
photon propagator due to the electron vacuum polarization

order contribution starts already at O(δ3), and the next-
to-leading order contribution (interference of strong inter-
actions with the vacuum polarization) comes at O(δ4). In
this paper, we explicitly include these contributions in the
expression of the energy. Note that at the accuracy con-
sidered here, the whole effect of the vacuum polarization
reduces to the modification of the timelike component of
the free photon propagator by an electron loop (see Fig. 1):

D00(k) = − 1
k2 (5)

→ − 1
k2 − α

3π

∫ ∞

4m2
e

ds
s+ k2

1
s

(
1 +

2m2
e

s

)√
1 − 4m2

e

s
.

3 Energy shift and width of kaonic hydrogen

The energy spectrum of kaonic hydrogen is obtained by
using Rayleigh–Schrödinger perturbation theory (for de-
tails, see [16]; see also [24] for the derivation of the energy
shift for a generic excited state of the πK atom by using
non-relativistic Lagrangians). Namely, at the first step one
constructs the full Hamiltonian H = H0 + HC + V from
the Lagrangian given by (4). In this expression, H0 stands
for the free non-relativistic Hamiltonian of the KN pair,
HC denotes the pure Coulomb interaction between K−
and the proton, and the rest of the interaction is included
in the operator V which is treated as a perturbation. The
general solution of the unperturbed Schrödinger equation
with the Hamiltonian H0 + HC, that corresponds to the
quantum-mechanical Coulomb problem for the bound sys-
tem of spin-0 and spin-1/2 particles, is characterized by the
quantum numbers n = 1, 2, . . ., j = 1

2 ,
3
2 , . . .,m = −j, . . . j

and l = j ± 1
2 ,

(H0 + HC)|Ψnljm(P)〉 = Ēn(P)|Ψnljm(P)〉 ,

Ēn(P) = mp +MK+ +
P2

2(mp +MK+)
− µcα

2

2n2

.= Ēn +
P2

2(mp +MK+)
,

|Ψnljm(P)〉 =
∑

s

∫
d3q

(2π)3
〈jm|l(m− s)

1
2
s〉

×Yl(m−s)(q)Ψnl(|q|) |P,q, s〉 ,

|P,q, s〉 = b†(µ1P + q, s)a†(µ2P − q)|0〉 . (6)

Here, µ1 = mp/(mp +MK+), µ2 = MK+/(mp +MK+), a†,
b† stand for the creation operators for the non-relativistic
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p 4/8mp
3

a

p 4/8MK+
3

b

cp
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d1 d1
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i
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Fig. 2. The set of diagrams contributing to the energy shift of
the kaonic hydrogen up-to-and-including O(δ4). Solid, dashed,
double, dotted, wiggly and spring lines correspond to the pro-
ton, K−, neutron, K̄0, Coulomb and transverse photons, respec-
tively. The electrons run in the closed loops shown in diagrams
d and i . The diagrams f and i contain Coulomb ladders – the
contributions with 0, 1, 2, . . . Coulomb photons exchanged

proton andK−, Ylm and 〈jm|l(m−s) 1
2 s〉 are the spherical

harmonics and the pertinent Clebsch–Gordan coefficients,
respectively, and Ψnl(|q|) denotes the radial Coulomb wave
function, which depends on the magnitude of the rela-
tive momentum |q|. We further define the “pole-removed”
Coulomb Green function Ĝnlj(z) and the elastic transition
operator Mnlj(z):

G0(z) =
1

z − H0
, G(z) =

1
z − H0 − HC

,

Ĝnlj(z) = G(z) −
∑
m

∫
d3P
(2π)3

|Ψnljm(P)〉〈Ψnljm(P)|
z − Ēn(P)

,

Mnlj(z) = V + VĜnlj(z)Mnlj(z) . (7)

By using Feshbach’s formalism [25], one can show that the
(complex) energy shift of the level characterized by the
quantum numbers njl is given by

∆Enlj = (Ψnljm|mnlj(Ēn)|Ψnljm) + o(δ4) ,

〈Ψnljm(P)|Mnlj(z)|Ψnljm(0)〉
.= (2π)3δ3(P) (Ψnljm|mnlj(z)|Ψnljm) . (8)

In order to evaluate the energy shift up-to-and-including
O(δ4), it suffices to include only the diagrams (a)–(i) shown
in Fig. 2 in the calculation of the operator Mnlj(z). The
resulting expression is then sandwiched between Coulomb

wave functions. We stress that none of the other diagrams
that can be constructed from the Lagrangian (4), nor any
possible contribution from higher-dimensional operators
that are not explicitly displayed in (4), contributes to the
energy shift at order δ4. Here we do not provide the de-
tails of the calculations; only the final result is given. It is
convenient to introduce a well-defined splitting of the en-
ergy shift into the “electromagnetic” and “strong” parts,5

where the former does not contain the couplings d̃i:

∆Enlj = ∆Eem
nlj + δl0

(
∆Es

n − i
2
Γn

)
+ o(δ4) ,

∆Eem
nlj = −

m3
p +M3

K+

8m3
pM

3
K+

(αµc

n

)4
{

4n
l + 1

2

− 3
}

− α4µ3
c

4mpMK+n4

{
−4nδl0 − 4 +

6n
l + 1

2

}

+
2α4µ3

c

n4

(
cFp

mpMK+
+

cSp
2m2

p

)

×
{

n

2l + 1
− n

2j + 1
− n

2
δl0

}

+
4α4µ3

c

n3 δl0

(
cDp

8m2
p

+
cRK

6M2
K+

)
+∆E

(d)
nl ,

∆Es
n − i

2
Γn = −α3µ3

c

πn3

{
d̃1 − αµ2

c

2π
d̃ 2
1 (χ+ sn(α))

− d̃ 2
2
µ0q0
2π

+ d̃ 2
2 d̃3

(µ0q0
2π

)2
}

+∆E(i)
n ,

χ = µ2(d−4)
(

1
d− 4

− Γ ′(1) − ln 4π
)

+ ln
(2µc)2

µ2 − 1 ,

sn(α) = 2
(
ψ(n) − ψ(1) − 1

n
+ lnα− lnn

)
, (9)

and µ0 = mnMK̄0/(mn +MK̄0), q0 = (2µ0(mn +MK̄0 −
mp −MK+))1/2, ψ(x) .= Γ ′(x)/Γ (x). Throughout this pa-
per, we use dimensional regularization to tame both UV
and IR divergences. In the above formulae, d stands for the
number of space-time dimensions and µ denotes the scale
of the dimensional regularization. As a check on our calcu-
lations, we have verified that the electromagnetic contribu-
tions in the above formulae that come from the diagrams
(a) + (b) + (c) reproduce the known result of [26] in the
limit 〈r2p〉 = 〈r2K〉 = 0. Moreover, with cFp = cSp = 0 the
above expressions reproduce the energy shift in the bound
state of two spin-0 particles [24].

5 This naming scheme should not be understood literally.
For example, the “electromagnetic” contribution depends on
the electromagnetic radii of the proton and K−, which are
determined mainly by strong interactions. On the other hand,
there are electromagnetic corrections to the couplings d̃i.
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The contributions due to the vacuum polarization
∆E

(d)
nl , ∆E(i)

n have been evaluated e.g. in [27], in the same
approach as used in the present paper (see also [13,28] for
the related discussion). At the order of accuracy we are
working, these contributions do not depend on the total
angular momentum j. We do not display here the (quite
voluminous) general result for any n and l. The expression
for ∆E(d)

nl is given in (3) of [27]. Furthermore, one may
write∆E(i)

n = −(α3µ3
c/πn3) d̃1 δ

vac
n +o(δ4), and relate this

quantity to the correction to the bound-state wave func-
tion at the origin due to the vacuum polarization effect
δvacn = 2 δΨn(0)/Ψn(0). In [27], this correction has been ex-
plicitly evaluated for the ground state (see (6) and Table II
of this paper), although the method used in this paper en-
ables one to make calculations for any excited level. Here,
it is important to stress that the “electromagnetic” contri-
butions from diagrams (a)+ (b)+ (c)+ (d), which have to
be unambiguously identified and systematically evaluated
up-to-and-including O(δ4), are only used for determining
the so-called “strong shift” (see (2)) from which the in-
formation about the KN scattering lengths is extracted.
Namely, the strong shift is defined as a difference between
the total energy shift and the electromagnetic shift. In the
rest of the paper we deal with the strong shift only.

Equations (9) do not solve our problem completely: the
energy shift is expressed in terms of the effective couplings
d̃i which have still to be related to the observable quantities.
As in [15, 16, 18, 24], this goal is achieved by performing
the matching for the KN scattering amplitudes in the
vicinity of threshold. In the absence of isospin breaking
one immediately gets

d̃
(0)

1 = d̃
(0)

3 =
π
µc

(a0 + a1) , d̃
(0)

2 =
π
µc

(a1 − a0) ,(10)

where d̃i = d̃
(0)

i + O(δ). However, as one sees from (9),
in order to evaluate ∆Enlj at O(δ4), d̃1 should be known
at O(δ) (for d̃2, d̃3 the accuracy of (10) suffices). At the
required precision, the quantity d̃1 can be determined from
matching to the K−p threshold elastic scattering ampli-
tude in the presence of electromagnetic and strong isospin-
breaking effects at O(δ) – the corresponding procedure is
described in detail in [16, 17]. At the first step, one re-
moves the one-photon exchange from the spin–non-flip
part of the relativistic scattering amplitude for the pro-
cess p(p) +K−(q) → p(p′) +K−(q′):

TKN = ū(p′)
{
D̃(s, t) − 1

4mp
[�q′, �q] B̃(s, t)

}
u(p) ,

D̃′(s, t) = D̃(s, t) − e2FK(t)F1(t)(s− u)/(2mpt) , (11)

where FK(t), F1(t) denote the kaon electromagnetic and
the nucleon Dirac formfactors, respectively, and s, t, u are
the usual Mandelstam variables. The quantity D̃′(s, t) is
singular at threshold, as themagnitude of the relative three-
momentum of the proton and kaon in the CM frame |p|
vanishes. At O(δ), the structure of this singularity is given

by [16,17]

e−2iαθC(|p|) D̃′(s, t)
∣∣∣∣
|p|→0

=
B̃1

|p| + B̃2 ln
|p|
µc

+ TKN +O(|p|) , (12)

where θC(|p|) denotes the (dimensionally regularized in-
frared-divergent) Coulomb phase

θC(|p|) (13)

=
µc

|p| µ
d−4

(
1

d− 4
− 1

2
(Γ ′(1) + ln 4π) + ln

2|p|
µ

)
.

In this normalization, the S-wave KN scattering lengths
and the threshold amplitude TKN in the isospin limit are
related by

TKN = 4π
(

1 +
MK+

mp

)
1
2

(a0 + a1) +O(
√
δ) . (14)

The quantity TKN should be matched to its non-relativistic
counterpart T NR

KN , written in terms of the couplings d̃i. A
direct calculation with the Lagrangian (4), which is carried
out in a similar way as in [16], yields

T NR
KN = d̃1 − d̃ 2

2
µ0q0
2π

+ d̃ 2
2 d̃3

(µ0q0
2π

)2
− d̃ 2

1
αµ2

c

2π
(χ− 2πi) .

(15)
The matching condition 2MK+T NR

KN = TKN enables one
to determine the coupling d̃1 at the required accuracy.
Substituting this value of d̃1 into the expression for the
strong shift, we finally get the formula in terms of the
observable quantities, which contains all isospin-breaking
terms up-to-and-including O(δ4):

∆Es
n − i

2
Γn = − α3µ3

c

2πMK+n3 (16)

× TKN

{
1 − αµ2

c

4πMK+
TKN (sn(α) + 2πi) + δvacn

}
.

Although (16) formally solves the problem stated in the
introduction, it is still not well suited for the analysis of the
experimental data. The reason for this is clear from (15).
There it is immediately seen that the unitarity correction
from the K̄0n bubble (second term in the RHS of this
equation), whose counterpart in the bound-state sector
is depicted in Fig. 2g, starts to contribute to the isospin-
breaking part of T NR

KN and TKN at O(
√
δ) (the quantity q0

is of order
√
δ). The situation here differs from the pionic

hydrogen case where the counterpart of the quantity q0 is
imaginary becausemp +Mπ+ > mn +Mπ0 , and the imagi-
nary part of TπN starts at O(

√
δ), not O(1). Consequently,

in the πN case the analog of (14) for the real part of the
scattering amplitude contains corrections at order δ and
not

√
δ. Exactly the above-described effect, which is noth-

ing but the unitarity cusp in the K−p elastic amplitude, is
the source of the huge isospin-breaking corrections in the
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energy shift of kaonic hydrogen, which were mentioned in
the introduction.

The above problem can be solved in the following man-
ner. From (15) we see that only the unitarity correction
to the quantity T NR

KN behaves like
√
δ, and all other cor-

rections, including corrections in the couplings d̃i, start at
O(δ) and are regular in δ at this order. On the other hand,
from (10) it is seen that the quantity d̃2 can be written in
terms of the scattering lengths, up to the terms of order δ.
From this one concludes that the corrections at O(

√
δ), al-

beit big, are expressed only in terms of the same scattering
lengths as are already present in the Deser-type relations
at the leading order,6 and the structure-dependent correc-
tions start at O(δ). This counting can be implemented in
the Deser formula, e.g. as follows. We sum up any number
of strong neutral bubbles shown in Fig. 2g, since the first
term in this expansion contains exactly the desired singular
piece with

√
δ. Further, instead of (14), we write

TKN = T (0)
KN +

iαµ2
c

2MK+
(T (0)

KN )2 + δTKN + o(δ) ,

T (0)
KN = 4π

(
1 +

MK+

mp

) 1
2 (a0 + a1) + q0a0a1

1 + q0
2 (a0 + a1)

. (17)

The above equation is nothing but the definition of δTKN ,
and our statement amounts to

δTKN = α t1 + (md −mu) t2 + o(δ) , (18)

where t1, t2 are functions of m̂ = 1
2 (mu + md),ms and

ΛQCD. For the actual calculation of δTKN one has, e.g.
as in the πN case, to use the information about the un-
derlying dynamics which is contained in the low-energy
effective chiral meson–baryon Lagrangians. With the defi-
nition given in (17), the formula for the strong shift looks
similar to that for the case of the pionic hydrogen

∆Es
n − i

2
Γn = − α3µ3

c

2πMK+n3 (19)

× (T (0)
KN + δTKN )

{
1 − αµ2

csn(α)
4πMK+

T (0)
KN + δvacn

}
,

where T (0)
KN , δTKN are given by (17), and δTKN = O(δ).

This is the final formula, which is best suited for the analysis
of the experimental data.

4 Results, discussion
and higher order corrections

The isospin-breaking corrections at O(
√
δ) that are con-

tained in the relation of T (0)
KN to the S-wave KN scattering

lengths a0, a1 are numerically by far the dominant ones.
These corrections have been derived more than 40 years

6 The same is true for the non-analytic corrections from (16),
which are proportional to α ln α.

Table 1. Expansion of the KN scattering amplitude T (0)
KN in

powers of q0. Scattering lengths and amplitudes are given in
fm, and N .=

(
4π(1 + MK+/mp)

)−1

[20] [30]
a0 = −1.31 + 1.24i a0 = −1.70 + 0.68i
a1 = 0.26 + 0.66i a1 = 0.37 + 0.60i

N T (0)
0 −0.52 + 0.95i −0.66 + 0.64i

N T (0)
1 −0.68 + 1.09i −0.98 + 0.66i

N T (0)
2 −0.67 + 1.15i −1.04 + 0.73i

N T (0)
3 −0.65 + 1.16i −1.04 + 0.75i

N T (0)
∞ −0.65 + 1.15i −1.03 + 0.76i

ago [9,10] by using the K-matrix formalism. However, this
piece of information should be still supplemented by the
arguments in favor of the conjecture that the remaining
corrections are small, i.e. δTKN = O(δ), as done in the
present paper.

In order to get a feeling for how big the corrections to
the Deser formula can be, we have done a simple exercise. In
Table 1 we list the results of the expansion of the quantity
T (0)

KN in powers of q0 ∼
√
δ, so that T (0)

m denotes T (0)
KN

calculated up-to-and-including O(qm
0 ) and T (0)

KN
.= T (0)

∞ .
The values for the scattering lengths that are needed in
these calculations are taken from [20].7 In these papers,
the KN scattering amplitudes are obtained by iterating
tree-level diagrams calculated within ChPT, through the
Lippmann–Schwinger equation (see also [19,29] for earlier
references). In addition, we use the experimental values
of the scattering lengths given in [30]. As we see from
the table, the corrections at O(

√
δ) are indeed huge – they

amount up to a few tens of percent. More precise predictions
are not possible, because the scattering lengths themselves
are not very well known. On the other hand, instead of
1
2 (a0 + a1) as contained in the original Deser formula,
one might determine the combination of these scattering
lengths T (0)

KN . This combination, which already includes the
big corrections at O(

√
δ), can be extracted from data with

a much better accuracy. As one may observe from Table 1,
the convergence of the expansion in the parameter

√
δ is

rather good.
Note also that if one uses the scattering lengths a0 =

−2.24 + 1.94i, a1 = 0.54 + 0.54i (in fm) as given in [19],
then the convergence of the series in

√
δ is significantly

worse. More precisely, one gets −0.85+1.24i, −1.28+1.82i,
−1.17 + 2.12i, −1.04 + 2.16i, . . .− 1.00 + 2.09i (in the no-
tation employed in Table 1). It can be argued that this
result contradicts the general expectation for the size of
the isospin-breaking corrections: one sees that in these se-
ries the corrections at O(δ3/2) amount approximately to
15–20% in the real part of the amplitude. Moreover, this
result also contradicts our derivation of the energy shift:
there is no justification for neglecting the O(δ3/2) terms in
the bound-state energy, if in the amplitude their contribu-

7 The scattering lengths a0, a1 are not displayed separately
in [20]. We thank J. Oller for providing these values.
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tions are so large. However, we would like to stress that in
the approach used in [19], the straightforward introduction
of a cutoff to regularize the unitarity resummation violates
chiral symmetry, since the amplitudes are not matched to
the chiral expansion8. The considerably larger values of
the scattering lengths than those determined by the ex-
periment [30], which in its turn cause problems concerning
the convergence of the series, might have been resulted
from this implicit violation of chiral symmetry. Such a
problem does not arise in the calculation of [20] since an
explicit matching to the ChPT amplitudes is performed
and the regularization is done employing subtracted dis-
persion relations. That this procedure leads to reasonable
scattering parameters was demonstrated explicitly for the
case of pion–nucleon scattering in [32].

We further investigate the magnitude of O(δ) correc-
tions in (19). The Coulomb corrections that are amplified
by lnα are sizable but smaller than those due to the unitar-
ity cusp: for the choice of scattering lengths from [20,30],
the real part of the correction term in the ground state
is [9%, 15%], respectively. Again, we do not need to know
this number very accurately; since the Coulomb correction
depends on the scattering lengths a0, a1 only, we can use
the modified Deser relation which includes the Coulomb
term to determine T (0)

KN .
Below, we briefly consider other corrections contained

in (19). The calculation of the quantity δTKN proceeds
analogously to the πN case. This quantity starts at order
p2 in ChPT. Further, according to (17), it is equal to the
isospin-breaking part of TKN at this order. In the actual
calculations we have used strong (see, e.g. [33–36]) and elec-
tromagnetic meson–baryon Lagrangians of SU(3)×SU(3)
ChPT (for the construction principles, see [37]):

L2 = b0Tr
(
B̄B

)
Tr (χ+) + bDTr

(
B̄{χ+, B}

)
+bF Tr

(
B̄[χ+, B]

)
+ F 2

0G1Tr
(
Q2

+
)
Tr
(
B̄B

)
+F 2

0G2Tr
(
Q2

−
)
Tr
(
B̄B

)
+ F 2

0G3Tr
(
B̄Q2

+B
)

+F 2
0G4Tr

(
B̄Q+BQ+

)
+ F 2

0G5Tr
(
B̄BQ2

+
)

+F 2
0G6Tr

(
B̄Q2

−B
)

+ F 2
0G7Tr

(
B̄Q−BQ−

)
(20)

+F 2
0G8Tr

(
B̄BQ2

−
)

+ terms with derivatives ,

where M = diag(mu,md,ms) and Q = ediag(2/3, −1/3,
−1/3) are the quark mass matrix and the charge matrix,
respectively, B stands for the baryon octet field, χ+ =
2B0(uMu + u†Mu†), Q± = 1

2 (uQu† ± u†Qu), and U =

u2 = exp
(

i
F0
Φ
)
, with Φ being the pseudoscalar boson

octet field. Here, F0 is the Goldstone boson decay constant
(in the chiral limit) and B0 = |〈0|q̄q|0〉|/F 2

0 measures the
strength of the quark–antiquark condensate (in the chiral
limit). Further, b0, bD, bf and Gi denote O(p2) strong and
electromagnetic low-energy constants (LECs), respectively.
Note that since our definition of the isospin limit involves
the physical masses of the charged particles, the terms

8 For a recent discussion on the use of cutoff regularization
in chiral effective field theories, see [31].
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Fig. 3. Predictions of the ground-state strong shift ∆Es
1 and

width Γ1. Filled circles correspond to using the Deser for-
mula (2), empty circles to using T (0)

KN instead of 1
2 (a0 + a1)

in this formula, and filled boxes to our final formula (19) with
δTKN = δvac

n = 0

with derivatives of the kaon fields do not contribute to
the isospin-breaking part of the K−p elastic amplitude at
O(p2). This quantity is equal to

δTKN =
4(∆M2

K)em
F 2

0
(b0 + bD)

+e2
{

−G1 +G2 − 2
3
G3 +

1
2
G4

− 1
3
G5 +

1
2
G6 +

1
2
G8

}
, (21)

where the subscript “em” denotes the electromagnetic mass
shift. Using Dashen’s theorem, we can replace (∆M2

K)em
by (∆M2

π)em = ∆M2
π + . . . at this order. Further, in the

numerical estimates we use b0 = −0.517 GeV−1, bD =
0.066 GeV−1 from [35]. For the unknown electromagnetic
LECs the order-of-magnitude estimate e2F 2

0 |Gi| ≤
αmp/2π was used. With these numerical values one gets
δTKN/T l.o.

KN = (−0.5 ± 0.4)% at O(p2), where T l.o.
KN =

MK+/F 2
0 is the isospin-symmetric part of the K−p ampli-

tude at the leading order. The fact that the uncertainty in
the isospin-breaking part of the KN amplitude turns out
to be smaller than in the πN amplitude [17] is not surpris-
ing: the quantities δTKN and δTπN are of the same order of
magnitude, whereas the isospin-symmetric part in theKN
amplitude is increased by a factor MK+/Mπ+ and addi-
tionally by a group-theoretical factor of 2. The results are
anyway to be taken with a grain of salt: it needs to be seen
how the results are changed in higher orders in the chiral
expansion. Finally, we note that the value δvac1 = 0.87%
given in [27] suggests that at present accuracy one may
well include this term in the systematic error.

In order to visualize the size of the isospin-breaking
effects, in Fig. 3 we plot the theoretical predictions cor-
responding to the scattering lengths from [20, 30] versus
the old and new experimental measurements of the energy
spectrum of kaonic hydrogen [2–6]. As we immediately
observe from the plot, the use of the lowest-order Deser



356 U.-G. Meißner et al.: Spectrum and decays of kaonic hydrogen

formula (2) cannot be justified anymore: both cusp effect
and Coulomb corrections have a size comparable with the
present precision of the DEAR experiment and should be
taken into account on extracting S-wave KN scattering
lengths from the experimental data. Note an apparent dis-
crepancy between the recent DEAR measurements and
the predictions obtained by using the scattering lengths
from [20, 30]. Moreover, one sees that when the isospin-
breaking corrections are applied, the results move away
from the DEAR measurements. We conclude that further
investigations are needed in order to shed light on this
interesting issue.

5 Summary and outlook

In this paper we derived the formal expression for the strong
shifts of the energy levels in kaonic hydrogen in QCD, up-
to-and-including O(δ4) in the isospin-breaking parameter
δ ∼ α,md − mu. The use of the non-relativistic effective
Lagrangian approach allows one to treat that otherwise
extremely complicated problem with a surprising ease. We
discover that large isospin-breaking corrections arise, in
particular, due to the following sources:
(a) s-channel rescattering with the K̄0n intermediate state
(cusp effect), and
(b) Coulomb corrections that are non-analytic in α. We
further prove that the remaining corrections are analytic
in δ at O(δ). Examining some of these corrections, on the
other hand, we do not find a big effect – the obtained values
are at the percent level, which one expects to be a typical
size of isospin breaking in QCD.

The present status of corrections in kaonic hydrogen
can be summarized by (19). Instead of the combination
1
2 (a0 + a1) which enters in the original Deser formula (2),
we propose to focus on the extraction of the quantity T (0)

KN

from the experimental data. The reason for this is that T (0)
KN

already includes the dominant non-analytic corrections in
a parameter-free form. The remaining analytic corrections
atO(δ) are contained in the quantities δTKN and δvacn . The
evaluation of δTKN within ChPT could be interesting, but
possibly complicated due to the expansion in the strange
quark mass. At the present stage, in the absence of such cal-
culations, the best is to include δTKN in the estimate of the
systematic error. From the above discussion one may hope
that the effect from δTKN should not exceed a few percent,
which is a natural size of electromagnetic corrections.
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Phys. Rev. C 55, 1509 (1997) [nucl-ex/9610005]

24. J. Schweizer, Phys. Lett. B 587, 33 (2004) [hep-ph/0401048]
25. H. Feshbach, Ann. Phys. 5, 357 (1958); 19, 287 (1962)
26. G.J.M. Austen, J.J. de Swart, Phys. Rev. Lett. 50, 2039

(1983)
27. D. Eiras, J. Soto, Phys. Lett. B 491, 101 (2000) [hep-

ph/0005066]
28. U.D. Jentschura, G. Soff, V.G. Ivanov, S.G. Karshenboim,

Phys. Rev. A 56, 4483 (1997) [physics/9706026]



U.-G. Meißner et al.: Spectrum and decays of kaonic hydrogen 357

29. N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325
(1995) [nucl-th/9505043]

30. A.D. Martin, Nucl. Phys. B 179, 33 (1981)
31. V. Bernard, T.R. Hemmert, U.-G. Meißner, Nucl. Phys. A

732, 149 (2004) [hep-ph/0307115]
32. U.-G. Meißner, J.A. Oller, Nucl. Phys. A 673, 311 (2000)

[nucl-th/9912026]
33. A. Krause, Helv. Phys. Acta 63, 3 (1990)

34. E. Jenkins, Nucl. Phys. B 368, 190 (1992)
35. V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys.

E 4, 193 (1995) [hep-ph/9501384]
36. N. Kaiser, Phys. Rev. C 64, 045204 (2001) [nucl-

th/0107006]
37. U.-G. Meißner, S. Steininger, Phys. Lett. B 419, 403 (1998)

[hep-ph/9709453]; G. Müller, U.-G. Meißner, Nucl. Phys.
B 556, 265 (1999) [hep-ph/9903375]


